In 2020 Stephen Wolfram’s computational approach to identifying the fundamental basis of physics has been announced and is garnering attention. I am starting to arrive at some thoughts and impressions about Wolfram’s approach, so I thought I would start a post for collecting insights on this topic. I will update this post as I learn more and have deeper understanding on how to compare and contrast Wolfram’s Physics to NPQG.
The Essential Ideas of Wolfram Physics : “The basic concept of applying our models to physics is to imagine that the complete structure and content of the universe is represented by an evolving hypergraph. There is no intrinsic notion of space; space and its apparent continuum character are merely an emergent large-scale feature of the hypergraph. There is also no intrinsic notion of matter: everything in the universe just corresponds to features of the hypergraph.” For example, space is modeled as a graph network that evolves over time given a set of rules. This work builds on Wolfram’s prior work in cellular automata.
Stephen’s appeareance on the podcast of Dr. Brian Keating (UC San Diego) is a 2.5 hour session on meta characteristics of Wolfram Physics. While this is quite interesting, there is no real discussion of the actual detailed approach. Instead we learn that it is a computational approach that is much like a cellular automata in that basic primitives are supplied along with a rule set for evolving in forward moving time steps. Yet the primitives and rules are not discussed at all. However, the meta impressions that Wolfram has gleaned from this work are fascinating and several are very similar to the insights I have had working on Neoclassical Physics and Quantum Gravity.
NPQG models a fundamental 3D Euclidean void which has been permeated by a structure that we call Einstein’s spacetime or the quantum vacuum or more properly spacetime æther. Spacetime emerges from an abundance of æther particles which, in free space and low gravity environments like Earth, are very low energy particles that interact extremely lightly. The spacetime æther particles are undetectable directly by 2020 era technology, but we see their effects in processes like gravity, pair production, transmission of photons, and many other processes we take for granted. The evolution rules in NPQG are simply classical mechanics and electromagnetism. Compare this model to Wolfram’s more abstract computational hypergraph.
When I think of the computational approach to NPQG there is no fundamental need to calculate fields in empty Euclidean space. It is only necessary to calculate the aggregate of all scalar and vector potential at each location in absolute space and absolute time where a point charge exists. The potential fields will determine the forces on the point charge. We must also consider the velocity and momentum of the point charge. This requires keeping path history for each point charge.
How do potential fields emitted by a point charges propagate over time?
- Does the propagtion rate change depending on intervening particles? Let’s simplify for now and say no.
- Do the fields pass right through intervening particles like they aren’t there? Let’s simplify for now and say yes.
- What speed shall we assign to the propagation velocity of these fields? The most obvious choice is the asymptote of the speed of light in free space. I say asymptote because that is the speed in low energy spacetime where the spacetime particles are the largest, and would correspond to the speed of the photon when lease limited by the least energetic aether.
A significant issue for Wolfram physics is that there is no fundamental physical basis for the computational graphs. While it is not clear to me how a physical basis could be incorporated, I presume it would be possible. I would hazard a guess that with Stephen Wolfram’s experience and infractructure for computational science that if the NPQG physical basis were the starting point that rapid progress could be made.
One key similarity between NPQG and Wolfram Physics is the idea that the universe evolves as a cellular automata. All influences and reactions are local and based on physical laws (NPQG) or rules (Wolfram). This automata approach is contrasted to GR/QM/ΛCDM era physics which identifies or curve fits equations to describe nature at scales many orders of magnitude above the Planck length scale.
J Mark Morris : San Diego : California