Science does not yet understand gravity. Let’s fix that.

To understand nature and gravity, we must reimagine spacetime as an æther with a mix of various gases, just like the air we breathe is made of multiple gases. What are those gases? We know that air is made of gases at the molecular level such as hydrogen, nitrogen, oxygen, and others. Let’s imagine that spacetime æther is dominated by very cold, very lightly-interacting particles, at a scale below that of molecules, atoms, electrons, protons, and neutrons. Imagine these particles are all made from a combination of two fundamental particles, the electrino and the positrino, each 1/Nth charge *(I have been modeling with 1/6th charge)*.

**What Gases are in Air?**

“By volume, dry air contains 78.09% nitrogen, 20.95% oxygen, 0.93% argon, 0.04% carbon dioxide, and small amounts of other gases.” – Wikipedia

**What Gases are in Spacetime? **

Spacetime æther (aka quantum vacuum) includes spacetime particles as well as all photons and neutrinos passing through, dominated by those that have traveled so far in the (possibly infinite) universe that their temperature has dropped to near absolute zero Kelvin as they yielded energy during their journey. The reduction in temperature of these photons and neutrinos has been lost in reactions, primarily due to galaxy local spacetime æther expansion. The æther may also include any composite particle products of multiple photons and/or multiple neutrinos that react at some temperature and/or particles forged in some other reaction. These may include axions or gravitons.

The spacetime æther has a black body spectrum of 2.7 Kelvin. The general relativity (GR) and quantum mechanics (QM) era science has mistakenly attributed this radiation to a cosmic microvave background from the incorrectly conceived Big Bang.

**Squaring Spacetime Æther with GR and QM**

How do we square these ideas with quantum mechanics (QM) and general relativity (GR)? Surely we must find a way to finesse right in between them, because both theories are so successful. Absolutely! It’s all a matter of the scale of precision. GR and QM do well at their scale and where they apply.

The first stipulation is that quantum mechanics must adapt such that each field is strictly limited to one that could be created by a collection of classical particles observing a set of wave equations, the classical particles being the electrino and the positrino, each 1/Nth charge.

The second stipulation is that general relativity must adapt to understand gravity not as pure mathematical equations, but as a *chemistry*, a mix of particles and interacting wave equations that serve to heat or cool nearby particles. The local energy of the spacetime æther and its gradient (rate of change) are the drivers of an electromagnetic convection that we call gravity. There is no pure math at the actual level of nature – it is a chaos of discrete particles, continuous fields, and discrete energy transfers. At the foundation, spacetime æther is a gas, gas, gas. It is a collection of varied particles, each with a particular composition, energy, reaction profile, position, velocity, and so on.

The Rolling Stones

“I was born in a cross-fire hurricane

And I howled at the morning driving rain

But it’s all right now, in fact, it’s a gas

But it’s all right. I’m Jumpin’ Jack Flash

It’s a gas, gas, gas”

**Implementing Gravity**

Every* particle no matter the type, including spacetime æther particles are participating in gravity. Why? Because the wave equation of every particle interacts continuously and losslessly with the wave equation of every other particle based on an inverse squared distance law. Even if a particle’s electrinos and positrinos in its shell have slowed incredibly, or to zero, the particle continues to participates in gravity.

**Note: There is one exception and that is Planck particles on the interior of a Planck core do not participate in gravity.*

Participating in gravity simply means that the wave equation of your particle is engaging electromagnetically with the wave equation of nearby particles. The degree of engagement falls off as radius squared.

Let’s apply our new knowledge!

A photon is both a wave and a particle. Therefore every photon is participating in gravity. Every photon has a mass, although incredibly small and close to zero, especially a cold photon near absolutel zero Kelvin. Imagine two isolated stars orbiting their binary center of mass in a large bubble of 2.7 K spacetime æther. The** path from star to star** that carries gravitational waves, photons, and neutrinos is slightly warmer than the surrounding spacetime æther and is also aligned with the force of gravity. There are two reasons. First, the energy flow from each star’s particles wave equation makes a temperature ridge between the stars. Second, the photon and neutrino energy emitted by each star also makes a temperature ridge between the stars. Expressed mathematically, for every circle of radius R from either star, the peak temperature of the spacetime æther will be on a path between the stars. This path is not a straight line path because the stars are orbiting their center of mass of the binary system and the speed of light causes the waves and particles to take some time to reach the other star.

Is it a coincidence that there is a warm and curvy temperature bridge of spacetime æther between the stars? No! Gravitational attraction (convection) occurs because it takes less energy for the matter-energy of a star to interact with the warmer spacetime in the bridge. Matter-energy generally seeks the warmest path through spacetime (convection). Therefore the spacetime æther temperature and its gradient implements gravity, and this is a clue that will help resolve open problems in physics and cosmology.

Here is a simpler way to think about gravity. All particles have a “mass” and are participating in gravity to some extent. Even the very cold particles of the spacetime æther are interacting with their neighbors and transmitting a lossless energy wave. Every photon and neutrino interacts with nearby spacetime particles momentarily. Matter-energy particles by definition exchange energy with all other matter-energy particles. Modeling gravity as centralized point masses misses this *incredibly rich dynamic* that causes the temperature of spacetime particles to vary according to all impinging waves. Has this been taken into account in the search for dark matter and dark energy? No, because current GR-QM era physics and cosmology do not understand nature.

We’ve covered the more typical case we observe, which is gravitation of warm matter-energy through relatively cool spacetime. Things get even more interesting when we start thinking about situations when spacetime is really hot and getting hotter. What happens near a dense object where spacetime is hot? How does matter-energy at a variety of temperatures and compositions interact with hot spacetime or a black hole? Can you imagine?

p.s. One of the discarded ideas in science is that of Superfluid Vacuum Theory (SVT). I haven’t yet studied SVT, but I found the abstract of this 1975 paper fascinating and aligned with NPQG.

**J Mark Morris : San Diego : California : October 23, 2019 : v1**

## 6 replies on “How Nature Implements Gravity!”

After reading this I still don’t understand how it explains how distant objects are physically “attracted” to each other’s instantaneous position. If gravity is just a local interaction, there would be no long range directionality.

LikeLiked by 1 person

Thanks for commenting! The idea is that every shell, whether empty or containing a payload (proton, electron, neutron, …) will interact electromagnetically with other shells according and that falls off with 1/r^2. That falls off pretty fast but goes on for ever presumably. But in interacting with nearby shells, the energy that is temporarily transferred serves to interact with that shells neighbors, and so on forever. All of this spreads out as 1/r^2. If you have a lot of concentrated matter like earth, it will heat up nearby spacetime gas quite a bit. So around a celestial matter object is always a gradient or slope to the energy as you move away from the object. Now take a single atom out in space, let’s say at a radius where satellites orbit. Consider the spacetime gas particles around that atom. On the side towards the earth, the spacetime gas will be slightly hotter (higher energy) than on the side of the atom away from earth, where the spacetime gas will be slightly cooler (lower energy). The atom would then feel a force towards earth and that force would be a force due to convection. I presume there is a better way to articulate it, but I am guessing that the atom will require less energy to exist in hotter spacetime so that is what causes the force. It’s on my list to study more thermodynamics to describe this convection mechanism better.

LikeLike

“The atom would then feel a force towards earth and that force would be a force due to convection.” Could that convective force be as strong and as directed as we observe gravity to be? It seems unlikely. I still like TVF’s pushing gravity concept!

LikeLiked by 1 person

Yes, I think that convective force IS gravity. I am going to start writing a post specifically on this subject and how it relates to the Dirac sea and potential energy. I’m not familiar with TVF, but I’ll look it up! Cheers!

LikeLike

TVF is Tom Van Flandern, the author of the 1993 book “Dark Matter, Missing Planets & New Comets” that I mentioned in another site’s comment.

LikeLiked by 1 person

Oh yeah. I’m reading that book now. It turns out there is also TVF international which has a two episode series on gravity with Jim Al-Khalili.

LikeLike