Idealized Neoclassical Model

Also, see the NPQG Glossary.


The purpose of this idealized model of nature is to facilitate thought experiments based on the assumptions of a minimal two-particle physical universe. The hope is that the thought experiments may lead to new insights and potential hypotheses about nature that can be researched. This is not a formal physics model.

The model is in development and evolves as new insights are discovered.


  • Particles – electrino and positrino. Conserved.
  • Energy – only carried by particles. Conserved.
  • Space – a three-dimensional Euclidean void.


  • 3D space: a Euclidean volume. 3D space is the vessel that is permeated with a superfluid that implements Einstein’s general relativity. The superfluid is made from standard matter-energy.
  • Time: implemented by particle energy (high energy = slow, low = fast)
  • Energy: implemented by particle wave equations
  • Charge: increments of + 1/6 or – 1/6.
  • Particle: present or not.
  • Spin: spin has left or right handedness or chirality.


  • Electrino and positrino particles
  • Mass-energy
  • Linear momentum
  • Angular momentum
  • Charge (immutable)
  • Parity


  • Maxwell’s equations
  • All composite particles are harmonic oscillators and have a set of wave equation solutions.
  • Wave equation solutions track the energy balance in harmonics.
  • Energy harmonics may be transferred between particles.
  • Maximum energy is the Planck energy of the Planck particle (1ε-/1ε+).
  • General relativity and gravity do not apply to Planck particle
  • Planck plasma of Planck particles may emit via jet or rupture from high energy objects and events. (e.g., Active galactic nuclei (AGN) of a supermassive black hole (SMBH))
  • Low mass particles (photons, neutrinos) form a low drag superfluid.
  • Low energy gravity waves are in constant lossless flux with neighbors.
  • Root-mean-square (RMS) gravity wave energy outstanding is related to mass by the mass-energy and energy-momentum relations.
  • The energy traded for inertial mass and momentum heats the local superfluid and propagates (at \mathbf{\frac{1}{r^2}} ).
  • The force of gravity results from convection in the superfluid.
  • Temperature of the superfluid is the strength of the gravitational field.
  • Neutral composite particle shells
  • Variable local speed of light based on superfluid temperature relationship to local permittivity and permeability.
  • Redshift: gravitational, doppler, cosmological drag, inflationary
  • Gauge invariance via Lorentz factor
  • Four forces (gravitational, weak, electromagnetic, strong).


  • Gravitational: lossless energy wave with neighboring particles.
  • Weak: implemented by electric field fragments of photons in reactions.
  • Electromagnetic: implemented by the photon, acts on electric charge of electron and proton.
  • Strong: the magnetic field of the wave equation of particles. 


  • Recycling of standard matter (including superfluid) through high energy objects or events. In particular, active galactic nuclei (AGN) supermassive black holes (SMBH), Planck particle plasma, and emission via jet or rupture. [dark matter, galaxy rotation curves, anomalous redshift observations, expansion?]
  • Anti-matter hiding as payload in protons and neutrons. This solves the longstanding question of where is the expected anti-matter. [baryon asymmetry]
  • Instead of a one-time big bang and cosmic inflation, intermittent ongoing galaxy local bangs/jets and galaxy local inflation. [universe age]
  • Possibility of anisotropic superfluid flow. [dark energy, expansion?]
  • Variable maximum speed of light given by local permittivity and permeability as a function of superfluid temperature. [gravitational lensing]
  • Photon velocity as a function of photon energy, according to a Lorentzian curve. [redshift]
  • Very small scale photon drag from the superfluid as a source of cosmological redshift. May be non-linear. May depend on temperature of energies of superfluid and photon.

28 thoughts on “Idealized Neoclassical Model

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s