Fresh Thinking About Redshift

Let’s talk about redshift and its causes from the perspective of the Neoclassical Physics and Quantum Gravity model. NPQG leads to an in-depth and insightful understanding of redshift, or more generally photon energy transactions.

Let’s talk about redshift and its causes from the perspective of the Neoclassical Physics and Quantum Gravity (𝗡𝗣𝗤𝗚) model. 𝗡𝗣𝗤𝗚 leads to an in-depth and insightful understanding of redshift, or more generally photon energy transactions within spacetime æther.


Science terminology for the accumulated loss of photon energy is “redshift” which non-intuitive. First of all redshift is anthropocentric, relying as it does on the spectrum of radiation that is visible to humans. Likewise, blueshift, is the term for a photon gaining energy. Second, the redshift terminology relies upon the audience to remember which direction in the visible light scale is towards longer wavelengths and lower energy (red) vs. shorter wavelengths and increased energy (blue). Third, the redshift terminology also applies to non-visible portions of the electromagnetic spectrum which is odd and confusing. It is much simpler and more accurate to simply say reduced energy photon instead of redshift, and increased energy photon instead of blueshift.

Wikipedia information and formulas for redshift.

GR-QM era science does not yet fully understand redshift. A key example is that science does not yet have any measured data or theory around redshift of a photon traveling through spacetime æther with temperature T (i.e., energy E) nor a theory around redshift of a photon experiencing a temperature gradient G in temperature T spacetime æther. GR-QM era science postulates that photons travel through the empty vacuum of space without loss of energy and that expansionary abstract geometrical space of Einstein causes the photon wave to stretch. However, remember that Einstein proposed no natural physical implementation of spacetime.


Consider a photon lifecycle. Perhaps reaction energy is transferred to a nearby low energy photon in spacetime æther and zing – off it goes at local speed of light. That photon may experience many energy transactions, both decreases and possibly increases, as permitted by the harmonic trading behavior of its wave function. At some point that photon may yield enough energy to transform back into the æther.

A photon that is created deep in the gravity well of a dense matter-energy object will experience GRAVITATIONAL energy loss (redshift) simply to traverse the steep spacetime temperature gradient and escape the object. Then, it will experience expansionary redshift as it travels as a function of spacetime æther energy, flow, direction, and distance. The photon may also experience DOPPLER energy shift if the emitter or receiver are moving towards or away from the photon. A new consideration in NPQG is INFLATIONARY redshift from galaxy local inflation. Let’s discuss these forms of redshift.


A photon emitted nearby a dense matter-energy object will travel at local speed of light, as determined by the temperature of spacetime æther. Spacetime æther temperature is determined by gravitational energy waves emitted by the particles in the dense matter object since mass corresponds to the energy exchanged with nearby particles of spacetime æther. Spacetime energy (temperature) factors into the photon energy emerging from the reaction, considering that many photons are formed from the decay of a spacetime æther particle. The photon’s total energy is the pre-emission photon energy, plus the energy from the reaction that was transmitted to the photon, plus a component from the energy of the spacetime æther particle that decayed into the photon (usually two). As the photon travels away from the dense object and towards free space, it must face a steep gradient in spacetime temperature, and the photon, which has a very small mass, trades kinetic energy for potential energy, experiencing redshift. It is also worth noting that as the temperature of æther falls on this journey out of the objects gravitational field, local speed of light increases due to the changes in permittivity and permeability.


Let’s consider only linear motion in one dimension. The photon emitter has velocity Ve relative to æther, the photon receiver has velocity Vr relative to æther. We are considering redshift, so the distance between emitter and receiver is increasing. No matter what, we can be assured that the photon will travel at the local speed of light based on spacetime æther energy. Let’s assume the distance traveled is small. How does redshift occur in this case? Each photon must be redshifted either at the emitter or at the receiver. Redshift means less energy. If the emitter is stationary, no energy is required to change the initial momentum of the photon. If the emitter is moving away, partial energy must go towards reversing momentum of the photon which therefore leaves less energy for the photon itself and it is redshifted. Likewise compared to a stationary receiver, a receiver moving away must use some of the energy to equalize momentum which leaves less energy for the photon and it appears to be redshifted. This is a fascinating new way to think about this that is enabled by the realization that photons have mass, even though miniscule.


Redshift from inflation is not often discussed by science since most consider the one time inflationary Big Bang redshift to be accepted science. However, 𝗡𝗣𝗤𝗚 predicts that there was no Big Bang and instead that inflation is a routine occurrence around Planck plasma jets and mini-bangs emitted from the supermassive black holes typically found in the center of galaxies.. Inflationary redshift is related to gravitational redshift. The mathematics should be similar, although the turbulent reactions around Planck plasma likely are different than other typical celestial light sources. This is an area for ongoing research.

Expansion is misunderstood in ΛCDM as a universal outflow from a one time inflationary Big Bang. Instead, expansion needs to be reframed as opposing galaxy local expansions of spacetime æther. We still get the same expansionary redshift of photons, but it is not uniform universe wide. Of course given the difficulty of establishing the constancy of the Hubble “constant” this makes a lot of sense, precisely because it is NOT a constant. Expansion is galaxy local and will vary not only within each galaxy, but from galaxy to galaxy. Furthermore, there are spacetime æther flows in clusters of galaxies that will undoubtedly have a small but accumulative effect on photons. Spacetime æther may be flowing in various directions relative to a photon trajectory. The end result is that a photon may pass by more or less spacetime æther particles than it would if spacetime æther were not flowing.


Is it possible that the spacetime æther can contract in some regions? What would this mean? It means that there would be a dense matter-energy sink where spacetime æther is consumed. The logical place to look for this is around black holes and in particular around supermassive black holes. Spacetime æther particles have a very low mass and may not experience much gravitational force, even from a black hole. On the other hand, for all we know black holes may gulp down spacetime æther. Let’s put this thought on hold for now, but keep it as an idea to contemplate.


A given photon may experience multiple types and degrees of redshift. Redshift is simply a loss of energy. A photon may experience many energy transfers in its lifetime.


We also see shifted absorption lines in redshifted spectrum.


How do we explain the shifting of reaction absorbtion spectral lines? Well, first of all, it’s nonphysical to talk about shifting nothing (an absence of photons), so instead let’s first look at both sides of the gap. We already know that redshift occurs. Therefore it is no surprise that the frequency gap is defined by its redshifted boundaries.

What about the shifting of emission spectral lines? In this case we have an aboundance of photons to shift, and we know how redshift works, so it makes sense.


Halton Arp observed a number of cases of young galaxies and galaxy precursors aligned axially with large galaxy AGN SMBH, but with a diversity of redshifts.

“An “exotic” idea proposed by Viktor Ambartsumian was that new galaxies are formed through the ejection from older active galaxies. Galaxies beget galaxies, instead of the standard scenario in which galaxies stem from the evolution of the seeds derived from fluctuations in the initial density field. This idea is in some way contained in the speculative proposal that some or all Quasi-Stellar Objects (QSOs) might be objects ejected by nearby galaxies, and that their redshift is not cosmological (Arp, G./M. Burbidge and others).”

Mart ́ın Lo ́pez-Corredoira arXiv:0901.4534

I’ll include references and excerpts about this controversial idea at the end of this post. Needless to say, if these correlations exist, they are perfectly explained by Neoclassical Phyics and Quantum Gravity.


  • Every photon causes a small ephemeral local heating in the æther as it passes. What are the implications of this hypothesis?
  • A new model for Doppler redshift was introduced.
  • The spatial distance and photon age depend on the interaction of spacetime æther flow in relation to celestial objects.
  • The redshift diversity of AGN minor axis aligned QSO’s is consistent with a galaxy seeding narrative driven by Planck plasma jets.
  • The redshift diversity of AGN minor axis aligned QSO’s is consistent with rapid inflation upon emission of Planck plasma.
  • Scientists perform corrections on observations of superluminal jets by attributing apparent superluminality to angle of observation. However, it is possible for Planck plasma jets to be superluminal since general relativity does not apply once the jet has displaced spacetime æther in its path.


This post has introduced some new thinking about redshift in the context of NPQG. We have learned that the ideas of Ambartsumian and Arp appear to fit this emerging narrative. Yet many questions remain to be answered.

  1. Doppler redshift
  2. Gravitational redshift
  3. Galaxy local spacetime æther inflationary or regional expansion redshift
  4. Regional spacetime æther contraction blueshift (if possible).

There are also many questions to investigate

  • What is the causal information about EACH photon energy transaction?
  • What is the composition and wave function of a photon in terms of electrinos and positrinos?
  • What is the energy of the minimum energy photon, and the lowest transferable harmonic?
  • With this new insight, how does redshift relate to distance?
  • How does redshift relate to the interval of free space time since the photon departed the observed object?
  • How much does spacetime æther flow impact the movement of celestial objects?
  • What is the gradient of spacetime æther flow throughout the universe?
  • Does this change our thinking on distance and age calculations?

J Mark Morris : San Diego : California : June 13, 2019 : v1
J Mark Morris : San Diego : California : February 18, 2020 : v2


arXiv:0609514 : First tentative detection of anisotropy in the QSO distribution around nearby edge-on spiral galaxies, M. Lo ́pez-Corredoira, C. M. Gutie ́rrez, September 19, 2006. “Results. There is a clear excess of QSOs near the minor axis with respect to the major axis of nearby edge-on spiral galaxies, significant at a level 3.5σ up to angular distances of ∼ 3◦ (or ∼ 1.7 Mpc) from the centre of each galaxy. The significance is increased to 3.9σ with the > 0.5 QSOs, and it reaches 4.8σ if we include galaxies whose circles of radius 3 degrees are covered by the SDSS in more than 98% (instead of 100%) of the area.
Conclusions. Gravitational lensing in the halo of nearby galaxies or extinction seem insufficient to explain the observed anisotropic distribution of QSOs. The anisotropic distribution agrees qualitatively with the predictions of Arp’s models, which claim that QSOs are ejected by galaxies along the rotation axis, although Arp’s prediction give a distance of the QSOs ∼ 3 times smaller than that found here. In any case, a chance fluctuation, although highly improbable, might be a possibility rather than a true anisotropy, and the present results should be corroborated by other groups and samples, so we prefer to consider it as just a first tentative detection.”

arXiv:0801.0423 : Analysis of possible anomalies in the QSO distribution of the Flesch & Hardcastle catalogue, M. Lopez-Corredoira, C. M. Gutierrez, V. Mohan, G. I. Gunthardt, M. S. Alonso, Jan 2, 2008. Summary: Did not find QSO background anomalies in 41 objects studied from the FH04 catalogue.

arXiv:0901.4534 : Apparent discordant redshift QSO-galaxy associations, Mart ́ın Lo ́pez-Corredoira, November 6, 2018. Excerpts: “There are plenty of statistical analyses (e.g., Chu et al. 1984; Zhu & Chu 1995; Burbidge et al. 1985; Burbidge 1996, 2001; Harutyunian & Nikogossian 2000; Ben ́ıtez et al. 2001; Gaztan ̃aga 2003; Nollenberg & Williams 2005; Bukhmastova 2007) showing an excess of high redshift sources near low redshift galaxies, positive and very significant cross-correlations between surveys of galaxies and QSOs, an excess of pairs of QSOs with very different redshifts, etc. An excess of QSOs near the minor axes of nearby parent galaxies has also been observed (L ́opez-Corredoira & Guti ́errez 2007); however, the discovered excess for position angles lower than 45 degrees is significant only at the 3.5-σ level (3.9-σ for zQSO > 0.5) with the QSOs of the SDSS-3rd release (L ́opez-Corredoira & Guti ́errez 2007) and somewhat lower [2.2-σ (2.5-σfor zQSO > 0.5)] with the SDSS-5th release”.

“There are plenty of individual cases of galaxies with an excess of QSOs with high redshifts near the center of nearby galaxies, mostly AGN. In some cases, the QSOs are only a few arcseconds away from the center of the galaxies. Examples are NGC 613, NGC 1068, NGC 1097, NGC 3079, NGC 3842, NGC 6212, NGC 7319 (separation galaxy/QSO: 8”), 2237+0305 (separation galaxy/QSO 0.3”), 3C 343.1 (separation galaxy/QSO: 0.25”), NEQ3 (see Fig. 1/left; a QSO-“narrow emission line galaxy” pair separated 2.8” from another emission line galaxy with a second redshift, and all of them lying along the minor axis of an apparently distorted lenticular galaxy at ∼17” with a third redshift), etc. In some cases there are even filaments/bridges/arms apparently connecting objects with different redshift: in NGC 4319+Mrk 205, Mrk273, QSO1327-206, NGC 3067+3C232 (in the radio), NGC 622, NGC 3628 (in X-ray and radio), NEQ3 (Fig. 1/left), etc. The probability of chance projections of background/foreground objects within a short distance of a galaxy or onto the filament is as low as 10−8, or even lower. The alignment of sources with different redshifts also suggests that they may have a common origin, and that the direction of alignment is the direction of ejection. This happens with some configurations of QSOs around 1130+106, 3C212, NGC 4258, NGC 2639, NGC 4235, NGC 5985, GC 0248+430 (Fig. 1/right), etc. Other proofs presented in favor of the QSO/galaxies association with different redshift is that no absorption lines were found in QSOs corresponding to foreground galaxies (e.g. PKS 0454+036, PHL 1226), or distortions in the morphology of isolated galaxies”.

“In my opinion, we must consider the question as an open problem to be solved. I maintain a neutral position, neither in favor of nor against non-cosmological redshifts. The debate has lasted a very long time, around 40 years, and it would be time to consider making a last effort to finish with the problem. However, the scientific community does not seem very interested in solving the problem because most researchers consider it already solved. Supporters of the standard dogma of all redshifts being cosmological do not want to discuss the problem. Every time it is mentioned they just smile or talk about ”a posteriori” calculations, manipulations of data, crackpot ideas, without even reading any paper on the theme. The Arp-Burbidge hypothesis has become a topic in which everybody has an opinion without having read the papers or knowing the details of the problem, because some leading cosmologists have said it is bogus. This means that it is very difficult to make any progress in this field, as is usual when a researcher is away from the mainstream (L ́opez-Corredoira & Castro-Perelman, eds., 2008). On the other hand, the main supporters of the hypothesis of non-cosmological redshifts continue to produce tens of analyses of cases in favor of their ideas without too much care, pictures without rigorous statistical calculations in many cases, or with wrong identifications, underestimated probabilities, biases, use of incomplete surveys for statistics, etc., in many other cases. There are, however, many papers in which no objections are found in the arguments and they present quite controversial objects, but due to the bad reputation of the topic, the community simply ignores them. In this panorama, it would be difficult for the problem to be solved soon. Mainstream cosmologists are waiting for the death of the main leaders of the heterodox idea (mainly Arp and the couple Burbidge) to declare the idea as definitively dead. However, as in the case of Ambartsumian, some challenging ideas could survive or even be revived after some time if we leave open problems without a clear solution. Therefore, I would recommend that the community either finds good arguments against the Arp-Burbidge hypothesis, or that it allows their ideas to cohabit within the possible speculative hypotheses in cosmological scenarios.”

arxiv:0401420v3 : Redshift of photons penetrating a hot plasma, Ari Brynjolfsson, January 21, 2004. N.B. I first encountered Ari’s work on June 18, 2019 and although there are major differences, I see that portions are remarkabily prescient and consistent with respect to my discoveries of NPQG. Excerpts: “Plasma redshift contributes also to the heating of the interstellar plasma, the galactic corona, and the intergalactic plasma. Plasma redshift explains the solar redshifts, the redshifts of the galactic corona, the cosmological redshifts, the cosmic microwave background, and the X-ray background. The plasma redshift explains the observed magnitude-redshift relation for supernovae SNe Ia without the big bang, dark matter, or dark energy. There is no cosmic time dilation. The universe is not expanding. […] This means that there is no need for Einstein’s Lambda term. The universe is quasi-static, infinite, everlasting and can renew itself forever. All these findings thus lead to fundamental changes in the theory of general relativity and in our cosmological perspective.

By J Mark Morris

I am imagining and reverse engineering a model of nature and sharing my journey via social media. Join me! I would love to have collaborators in this open effort. To support this research please donate:

3 replies on “Fresh Thinking About Redshift”

With so much riding on our interpretation of redshift, it is about time that we get back question and reassess. Thank you, Mark, for daring to open up the discussion. Imagine the implications of a non-expanding universe! No big-bang! What would we learn from looking at the cosmic radiation from that new perspective?

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s