Glossary of Neoclassical Physics and Quantum Gravity

For NPQG basics see: Idealized Neoclassical Model.

3D Void

The 3D void is Euclidean space. It is not Einstein’s spacetime. It doesn’t curve, stretch, inflate, expand, or do anything for that matter. It is non-interacting. The 3D void does not have any inherent characteristic energy nor ability to carry energy itself. The 3D void is the empty vessel in which standard matter-energy particles and Planck particles may exist. In NPQG we can geometrically consider absolute distance, absolute direction, and absolute time with respect to the void, although to be clear there are no physical coordinate reference points in the void. It is unknown whether the 3D void is infinite, but it may be treated so for the purposes of NPQG. It is unknown whether any sizeable regions of unoccupied 3D void exist. The 3D void has no testable characteristics other than the deduction that the 3D void must exist because the universe exists.


A point-like particle with a negative 1/6 charge. Symbol: ε⊖ or ε-.


A point-like particle with a positive 1/6 charge. A positrino is the anti-particle of an electrino. Symbol: ε⊕ or ε+.

Epsilon Particle

An electrino or a positrino. Symbol: ε. Electrino ε⊖ and positrino ε⊕ need not be idealized point particles. They may be physical particles below the scales of action. They may also be considered as conserved excitations.

Epsilon Notation

A notation for describing composite particles and fragments. Expressed as a count of electrinos, a ‘/’ character, and a count of positrinos. A proton has epsilon notation 6ε-/12ε+. The ‘/’ character is always present, even if there is a zero count of either electrinos or positrinos. The alternate stylized format is ε⊖ or ε⊕. In informal notation, or formal notation after introduction of terminology, the epsilon symbol may be omitted, such as proton 6/12. Although not a fraction, a mnemonic is to remember that electrino count is in the numerator position, and positrino count is in the denominator position.

Standard Matter-Energy Particles

Quantum mechanics is based on a standard model of particles which can carry energy and are often referred to standard matter-energy particles, or matter-energy for short. Standard matter-energy is the basis for all elements in the periodic table and all reactions. The NPQG model goes one level deeper and can express all standard matter-energy particles as composites of electrino and positrino particles.


Planck Particle

In quantum mechanics and general relativity, the Planck units are considered to be a result of dimensional analysis, and no claim is made for the physicality of the Planck units. In NPQG, the Planck particle is physical, has the highest energy possible which is the Planck energy, has a Planck length radius, has a 2*pi*Planck length wavelength, and has the Planck temperature. In NPQG, Planck particles may form in very high energy objects or events, such as the core of some active galactic nuclei (AGN) supermassive black holes (SMBH). It is conceivable that Planck particles may form in other high energy objects or events. Planck particles may be considered to be a phase change of dense superfluid that occurs at the Planck temperature, which is the maximum particle temperature. General relativity and gravity do not apply to Planck particles when they can neither receive nor transmit gravitational wave energy, such as might occur when surrounded by other Planck particles.

Particle TemperaturePhaseGeneral
Presents Mass
Planck TemperaturePlanck particle core or plasmaGR does not applyNo
Planck Temperature > T > 0 KelvinSuperfluidGR appliesYes
0 KelvinFrozen superfluidGR does not applyNo

Planck Photon

A 6ε-/6ε+ particle with the highest energy possible, the Planck energy. Hypothesized to occur as ejecta of in-core Planck particles in a jet or bang. The Planck photon is the top photon on the harmonic ladder in the energy exchanging universe.

Planck Plasma

A plasma of particles emitted from exposed volumes of Planck particles. Planck plasma is expected to be composed of Planck neutrinos (potentially all generations) and Planck photons. Planck plasma is composed particles having the Planck energy. Planck plasma is found in extreme energy situations throught the universe, particularly in AGN SMBH jets or ruptures. It may also occur in other objects such as emissions from normal black holes, and as a result of mergers of black holes and neutron stars. General relativity is hindered in or near Planck plasma because it may not be possible to transmit or receive gravitational waves.

Planck Plasma Jet

A powerful Planck plasma jet forms from a core breach of a dense matter object which exposes in-core Planck particles to lower energy conditions. Such a jet is originated as Planck photons and Planck neutrinos. Jets frequently occur in pairs exiting each polar axis. Cooling jets rapidly decay and react into lower energy photons, neutrinos, and other standard matter-energy. The jet ejecta causes galaxy local inflation as it rapidly increases in scale. Notes: 1. Modern physics says that accretion disk matter-energy is also carried away in each jet. 2. See the Wikipedia article on radio galaxies.

Planck Plasma Bang

A catastrophic core breach of a dense matter object which exposes in-core Planck plasma to lower energy conditions in a chaotic matter that leads to turbulent explosion. This is not “The Big Bang”. A Planck plasma bang is typically localized within a galaxy. Such a bang causes rapid galaxy local inflation.

Wave Equation Solution Set

Energy is stored and transferred in harmonics of the wave equation solution set for each particle. The solution set may include changes in composition and structure of the particle. For example, it is conceivable, that on the route towards becoming a Planck particle, that a lower energy photon with a 6ε⊖/6ε⊕ formula may transform into two 3ε⊖/3ε⊕ particles, which is also the composition of a neutrino or an anti-neutrino. Perhaps on the path to becoming a Planck photon, a 3ε⊖/3ε⊕ particle could split into three ε⊖/ε⊕ pairs.

Superfluid Particle

In NPQG, the superfluid is modeled as a mix of neutral particles, particularly photons and neutrinos. These tend to be low energy particles and the overall superfluid has a black body spectrum of 2.7 K, i.e., the cosmic microwave background (CMB).


A composite particle with a formula of 6ε-/6ε. The highest energy photon is the Planck particle or Planck photon.


The rapid increase in geometrical scale of Planck plasma as it emits energy, reacts, and cools. In NPQG, inflation begins when in-core Planck particles are exposed to cooler surroundings via a jet or other core breach. Note: There is no single Big Bang in NPQG. Instead, the perpetual and intermittent emission of Planck plasma throughout the cosmos replaces the concept of the Big Bang.

Superfluid (formerly conceived of as Einstein’s spacetime)

Superfluid is defined by the regions of the 3D void (3D Euclidean space) which are permeated by an extremely weakly interacting superfluid of standard matter particles and thought to be mostly composed of low energy photons and neutrinos. Superfluid is material and contains energy, and is modeled as a black body with a 2.7 K black body spectrum consistent with measurements of the cosmic microwave background (CMB). The superfluid geometry is experimentally unknown, yet it may be helpful to imagine a dense foam or face-centered cubic (FCC) lattice. The terminologies “vacuum of free space” and “quantum vacuum” are not used in NPQG. Which regions of the 3D void are not superfluid? Planck particle cores, jets, and bangs are not superfluid. The immediate region beyond our cosmos (if it is finite) is not superfluid. It may be possible that there are other superfluid bubbles elsewhere in the 3D void.


Scientists of the GR-QM era believe that the Universe is expanding based upon redshift readings. However, there is reason to believe science does not fully understand redshift. This makes the idea of expansion questionable. There are really two possibilities. One possibility is the outflow of superfluid from Planck plasma emissions from every active galaxy towards the surface of a spherical cosmos, balanced by the inflow of standard matter-energy. It is possible that the net flow rates may fluctuate in magnitude and direction. Another possibility is that the redshift observation is indicating something else, like non-linear redshift. In NPQG we’ll only use the word expansion in reference to the GR-QM era while this tension is explored.

Superfluid Bubble Surface

Is our region of superfluid finite, infinite, or one of many bubbles? If the superfluid is finite then we may hypothesize a spherical superfluid bubble with a surface boundary. Beyond the surface is unknown but could possibly be 3D void, 3D void with clumps of superfluid and other standard matter, or a phase change to frozen superfluid at zero or near-zero energy. The surface of the bubble is modeled as a spherical shell where very cold superfluid structures decay into residual fragments with low energy that may react along with photons to form standard matter-energy and begin the inexorable gravitational journey back into the bubble. Eventually enough energy and matter would build up to create Hydrogen, and from there stellar nurseries, and the interior layers of the bubble surface may be an active source of matter-energy.


A composite particle with a payload of 6ε-/ in a 3ε-/3ε+ shell. The anti-electron, or positron, has a formula of /6ε+ also in a 3ε-/3ε+ shell.


A composite particle with a formula of 6ε-/12ε+. A photon encapsulating an anti-electron, aka positron. Note: NPQG has no missing anti-matter.


A composite particle with a formula of 3ε-/3ε+. The anti-neutrino has the same formula.


A composite particle with a formula of 9ε-/9ε+. A neutron is a photon encapsulating an anti-neutrino. Note: NPQG has no missing anti-matter.


TBD. May be related to the photon shell around a proton or neutron.


Common fragments of protons and neutrons exploded in a collider or high energy event. Each quark type defined in the standard model has a specific electrino/positrino formula.

W+/-, Z, and H Bosons

These appear to be intermediating fragments of photons involved in a reaction. Each has a specific electrino/positrino formula.

Exotic Composite Particles and other Fragments

See the Particle Data Group data book for the myriad known exotic particles, lifetimes, characteristics. Each has a specific electrino/positrino formula and configuration. There may be unknown fragments yet to be discovered. Generally these are high-energy and short-lived particles.

Fermion Generations

Generation I fermions have a 3ε-/3ε+ electron neutrino shell.
Generation II fermions have a 2ε-/2ε+ muon neutrino shell.
Generation III fermions have a 1ε-/1ε+ tau neutrino shell.

Pair Production

A reaction between photons that creates a fermion and anti-fermion. Epsilon particles and energy are conserved, as always.


The root mean square of the energy flux wave exchanged between standard matter-energy particles. This energy wave spreads out spherically through the superfluid. This form of gravitational wave is modeled as exchanged harmonics (energy quanta) of each particle’s wave function.


The force of gravity is caused by convection of standard-matter energy due to the temperature of the superfluid, which increases with standard matter-energy density.

Strong Force

The spin of electrinos and positrinos in a particle causes it to behave like a charged magnetic dipole and create magnetism. The magntetic field of a photon is typically strong as the particle is traveling near the local speed of light and the Lorentz factor comes in to play.

Weak Force

The charge of electrinos and positrinos, especially in the 2.7K CMB superfluid leads to a weak force. Enough said. It is only when there is a local discontinuity, i.e., a reaction, that the weak force even comes in to play. Even then it is a small local charge compared to distant protons and electrons. So, sometimes, it rulez.


Dark Matter

NPQG explains galaxy rotation curves as an outcome of mass conversion to Planck particles that do not participate in gravity, then upon jetting inflating, decaying, and reacting as photons, neutrinos, and other standard matter-energy. The galaxy local inflation of the superfluid of photons and neutrinos is also expected to impact galaxy rotation curves.

Dark Energy

The energy of superfluid and the outflow of the superfluid are the causes for the phenomenon targed by dark energy theory.

Big Bang

NPQG is a model of a recycling universe with no known beginning nor end. The concept of the Big Bang is replaced with perpetual and intermittent Planck plasma emission throughout the cosmos, and especially from AGN SMBH.

Cosmic Inflation

The Big Bang theory proposes an initial explosive event that creates the universe. The initial explosion is immediately followed by a cosmic inflation that is faster than the speed of light. However, since there is no Big Bang in NPQG, there is no cosmic inflation. However, the science of inflation in general will be reframed around Planck plasma emissions.

Baryon Asymmetry

There is no missing anti-matter in NPQG. Anti-matter is largely captured as the payload inside protons and neutrons. Free anti-matter quickly reacts and the reaction products are photons, and other standard matter-energy. Epsilon particles are conserved.

Early Universe

This term from the Big Bang era is obsolete in NPQG. Any writings that use this term or other euphemisms that imply a time relative to the Big Bang (e.g., “early time,” “beginning of the universe,” “primordial,” “late time,” etc.) should be re-evaluated and re-framed.


An ill-defined term related to general relativity mathematics producing infinites in a black hole. Instead, NPQG defines a phase change from dense standard matter-energy into Planck particles and this is where general relativity does not apply. Under certain conditions, Planck particles may escape from black holes because they are not subject to the gravity of general relativity.

White Hole


Many Worlds Interpretation


Vacuum, Quantum Vacuum



  • AGN : Active galactic nuclei
  • BB : Big Bang
  • BBIT : Big Bang inflation theory
  • BH : black hole
  • CMB : cosmic microwave background
  • ε⊖ or ε- : electrino
  • ε⊕ or ε+ : positrino
  • FCC : face-centered cubic
  • GR : general relativity
  • N : neutron
  • NPQG : Neoclassical Physics and Quantum Gravity
  • NS : neutron star
  • P : proton
  • QM : quantum mechanics
  • S : entropy
  • SM : standard model
  • SMBH : supermassive black hole

28 thoughts on “Glossary of Neoclassical Physics and Quantum Gravity

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s