Categories
Physics

Glossary of Neoclassical Physics and Quantum Gravity

3D Euclidean Void

The background for our universe is a three dimensional Euclidean void, which we will simply call ‘void space‘ or ‘3D void‘. It is not Einstein’s spacetime. Void space does not curve, stretch, inflate, expand, or do anything for that matter. Void space is non-interacting. Void space does not have any inherent characteristic energy nor ability to carry energy itself. Electric and magnetic fields created by electrinos and positrinos can pass through void space. The 3D void is the empty vessel in which standard matter-energy particles and Planck particles may exist. In NPQG we can geometrically consider absolute distance, absolute direction, and absolute time with respect to the 3D void of space, although to be clear there are no physical coordinate reference points in the void. It is unknown whether the 3D void is infinite, but it may be treated so for most purposes of NPQG. It is unknown whether any sizeable regions of unoccupied 3D void exist. The 3D void has no testable characteristics other than the deduction that the 3D void must exist because the universe exists.

Electrino

An immutable Planck radius particle with a negative 1/6 charge. Symbol: ε⊖ or ε-.

Positrino

An immutable Planck radius particle with a positive 1/6 charge. A positrino is the equal and opposite anti-particle of an electrino. Symbol: ε⊕ or ε+.

Planck Radius Sphere

An electrino or a positrino. Symbol: ε. Electrino ε⊖ and positrino ε⊕ need are physical particles with a Planck radius and thus a size far below the exploratory scale of GR-QM era physics. Electrinos and positrinos may also be considered as conserved Planck radius excitations for those inculcated in field theory. Planck spheres are immutable.

Planck Sphere Notation

A notation for describing composite particles and fragments. Expressed as a count of electrinos, a ‘/’ character, and a count of positrinos. A proton has notation 6ε-/12ε+. The ‘/’ character is always present, even if there is a zero count of either electrinos or positrinos. The alternate stylized format is ε⊖ or ε⊕. In informal notation, or formal notation after introduction of terminology, the symbol may be omitted, such as proton 6/12. Although not a fraction, a mnemonic is to remember that electrino count is in the numerator position, and positrino count is in the denominator position.

Standard Matter-Energy Particles

Quantum mechanics is based on a standard model of particles which can carry energy and are often referred to standard matter-energy particles, or matter-energy for short. Standard matter-energy is the basis for all elements in the periodic table and all reactions. The NPQG model goes one level deeper and can express all standard matter-energy particles as composites of electrino and positrino particles.

CERN

Planck Particle

In quantum mechanics and general relativity, the Planck units are considered to be a result of dimensional analysis, and no claim is made for the physicality of the Planck units. In NPQG, the Planck particle is physical, has the highest energy possible which is the Planck energy, has a Planck length radius, has a 2*pi*Planck length wavelength, and has the Planck temperature. In NPQG, Planck particles may form in very high energy objects or events, such as the core of some active galactic nuclei (AGN) supermassive black holes (SMBH). It is conceivable that Planck particles may form in other high energy objects or events. Planck particles may be considered to be a phase change of dense spacetime æther that occurs at the Planck temperature, which is the maximum particle temperature. General relativity and gravity do not apply to Planck particles when they can neither receive nor transmit gravitational wave energy, such as might occur when surrounded by other Planck particles.

Particle EnergyPhaseGeneral
Relativity
Presents Mass
Planck EnergyPlanck particle core or plasmaGR does not applyNo
Planck Energy > E > 0Spacetime æther that implements Einstein’s spacetimeGR appliesYes
0 EnergyDecayed or Frozen æther?
(existence unknown)
GR does not applyNo

Composite Planck particles with formulas Nε-/Nε+ with electrinos and positrinos at the highest energy possible, the Planck energy are hypothesized to occur as ejecta of supermassive black hole in a jet or rupture of the Planck core. The Nε-/Nε+ particles include the tau neutrino, muon neutrino, electron neutrino, photon, and the spacetime æther particle.

Planck Plasma

A plasma of particles emitted from a Planck core during a jet or rupture of a black hole. Planck plasma is expected to be composed of particles at or about the Planck energy. Planck plasma is found in extreme energy situations throughout the universe, particularly in AGN SMBH jets or ruptures. It may also occur in other objects such as emissions from mergers of black holes, and as a result of mergers of black holes and neutron stars. General relativity is hindered in or near Planck plasma because it may not be possible to transmit or receive gravitational waves. Furthermore a Planck core would shield some forms of mass transmission.

Planck Plasma Jet

A powerful Planck plasma jet forms from a core breach of a dense matter object which exposes in-core Planck particles to lower energy conditions. Such a jet is originated as Planck photons and Planck neutrinos and perhaps Planck energy spacetime æther particles. Jets frequently occur in pairs exiting each polar axis. Cooling jets rapidly decay and react into lower energy photons, neutrinos, spacetime æther and other standard matter-energy. The jet ejecta causes galaxy local inflation as it rapidly increases in scale. Notes: 1. Modern physics says that accretion disk matter-energy is also carried away in each jet. 2. See the Wikipedia article on radio galaxies.

Planck Plasma Mini-Bang

A catastrophic core breach of a dense matter object which exposes in-core Planck plasma to lower energy conditions in a chaotic matter that leads to turbulent explosion. This is not “The Big Bang”. A Planck plasma mini-bang is typically localized within a galaxy. Such a mini-bang causes rapid galaxy local inflation.

Wave Equation Solution Set

Energy is stored and transferred in harmonics of the wave equation solution set for each particle. The solution set may include changes in composition and structure of the particle. For example, it is conceivable, that on the route towards becoming a Planck particle, that a lower energy photon with a 6ε⊖/6ε⊕ formula may transform into two 3ε⊖/3ε⊕ particles, which is also the composition of a neutrino or an anti-neutrino. Perhaps on the path to becoming a Planck particle core or plasma, a 3ε⊖/3ε⊕ particle could split into three ε⊖/ε⊕ pairs.

Spacetime Æther Particle

In NPQG, the æther of spacetime is modeled as neutral composite particles. Spacetime æther is dominated by low energy particles and the overall æther has a black body spectrum of 2.7 K, i.e., the cosmic microwave background (CMB).

Photon

A composite particle with a formula of 6ε-/6ε.

Inflation

The rapid increase in geometrical scale of Planck plasma as it emits energy, reacts, and cools. In NPQG, inflation begins when in-core Planck particles are exposed to cooler surroundings via a jet or other core breach. Note: There is no single Big Bang in NPQG. Instead, the perpetual and intermittent emission of Planck plasma throughout the cosmos replaces the concept of the Big Bang. The galaxy local inflation causes expansion of spacetime æther in the vicinity of each active galaxy. The expansion proceeds until it encounters spacetime æther expanding from other galaxies.

Spacetime Æther (formerly conceived of as Einstein’s spacetime)

Spacetime æther is defined by the regions of the 3D void (3D Euclidean space) which are permeated by an extremely weakly interacting æther of spacetime particles. Spacetime æther is material and contains energy, and is modeled as a black body with a 2.7 K black body spectrum consistent with measurements of the cosmic microwave background (CMB). The æther geometry is experimentally unknown, yet it may be helpful to imagine a gas, or perhaps a dense foam or face-centered cubic (FCC) lattice forming at certain energy levels. The terminologies “vacuum of free space” and “quantum vacuum” are GR-QM era terms that map to spacetime æther. Which regions of the 3D void are not æther? Planck particle cores, jets, and mini-bangs are not spacetime æther.

Expansion

Scientists of the GR-QM era believe that the Universe is expanding based upon redshift readings. However, the improved model of NPQG shows that galaxy local inflationary mini-bangs lead to galaxy local expansion of spacetime æther. The gas expands locally until it encounters gas expanding from another galaxy. The outflow of æther from Planck plasma emissions from every active galaxy is typically somewhat balanced by the inflow of standard matter-energy. It is possible that the net flow rates may fluctuate in magnitude and direction or even mix with other galaxies. Since expansion of space proceeds at about 7% per billion years it takes about 13.8B years for spacetime æther to migrate from the SMBH jet event to the border of the galaxy with neighbors.

Spacetime Æther Extent

The extent of the spacetime æther is unknown and presumed infinite. There are other possibilities that can be imagined.

Electron

A composite particle with a payload of 6ε-/ in a 3ε-/3ε+ shell. The anti-electron, or positron, has a formula of /6ε+ also in a 3ε-/3ε+ shell.

Proton

A composite particle with a formula of 6ε-/12ε+ in a 9ε-/9ε+ gravitino shell. The proton may also be considered as a gravitino encapsulating a W+ boson. A W+ boson may in turn be considered as a photon encapsulating a positron. Note: NPQG has no missing anti-matter.

Electron Neutrino

A composite particle with a formula of 3ε-/3ε+. The electron anti-neutrino has the same formula. Neutrinos are Majorana particles.

Neutron

A composite particle with a formula of 9ε-/9ε+ in a 9ε-/9ε+ gravitino shell. A neutron is a gravitino encapsulating a Z boson. In turn a Z boson is a photon encapsulating an electron neutrino. Note: NPQG has no missing anti-matter.

Quarks

Common fragments of protons and neutrons exploded in a collider or high energy event. Each quark type defined in the standard model has a specific electrino/positrino formula. Quarks are encapsulated in 3/3, 2/2, and 1/1 shells corresponding to Generation I, II, and III respectively.

Exotic Composite Particles and other Fragments

See the Particle Data Group data book for the myriad known exotic particles, lifetimes, characteristics. Each has a specific electrino/positrino formula and configuration. There may be unknown fragments yet to be discovered. Generally these are high-energy and short-lived particles.

Fermion Generations

Generation I fermions have a 3ε-/3ε+ electron neutrino shell.
Generation II fermions have a 2ε-/2ε+ muon neutrino shell.
Generation III fermions have a 1ε-/1ε+ tau neutrino shell.

Pair Production

A reaction with the spacetime æther that creates a fermion and anti-fermion. Planck sphere particles and energy are conserved, as always.

Mass

The root mean square of the energy flux wave exchanged between shells of standard matter-energy particles. This energy wave spreads out spherically through the æther.

Gravity

The force of gravity is caused by convection of standard-matter energy due to the energy gradient of the spacetime æther. The energy density of æther increases with proximity to dense standard matter-energy.


TERMS FROM THE GR-QM ERA OF PHYSICS

Dark Matter

NPQG provides several new mechanisms to explain galaxy rotation curves and the other observations that seek dark matter as a solution.

  1. Spacetime æther is composed of particles of matter-energy. In low gravity environments spacetime æther particles are extremely low mass and energy. However, in the presence of dense matter-energy the spacetime æther heats up and gets denser and this causes the spacetime æther to increase its participation in gravity. Thus spacetime æther is one contributor to “dark matter.”
  2. Matter-energy consumed by galaxy center SMBH will cease to participate in gravity if and when it joins a Planck core, as is present in SMBH under certain conditions.
  3. Upon a Planck core breaching the event horizon, and Planck plasma jetting, inflating, decaying, and reacting as photons, neutrinos, and other standard matter-energy and the reappearance of mass above and below the galactic plane.
  4. The inflation and decay of Planck plasma jets also generates a tremendous amount of new spacetime æther and this may also impact galaxy rotation curves.

Dark Energy

The energy of spacetime spacetime æther and the galaxy local outflow of spacetime æther are the causes for the phenomenon targeted by dark energy theory.

Big Bang

NPQG is a model of a recycling universe with no known beginning nor end. The concept of the Big Bang is replaced with perpetual and intermittent Planck plasma emission throughout the cosmos, and especially from AGN SMBH.

Cosmic Inflation

The Big Bang theory proposes an initial explosive event that creates the universe. The initial explosion is immediately preceded by cosmic inflation that is faster than the speed of light. In NPQG the physical implementation for crunch, bang, inflation, expansion is the SMBH in each galaxy. These processes are galaxy local, distributed, intermittent, and independent.

Baryon Asymmetry

There is no missing anti-matter in NPQG. Anti-matter is largely captured as the payload inside protons and neutrons. Free anti-matter quickly reacts and the reaction products are photons, and other standard matter-energy. Planck sphere particles are indestructible and are conserved in all reactions.

Early Universe

This term from the Big Bang era is obsolete in NPQG. Any writings that use this term or other euphemisms that imply a time relative to the Big Bang (e.g., “early time,” “beginning of the universe,” “primordial,” “late time,” etc.) should be re-evaluated and re-framed.

Singularity

An ill-defined term related to general relativity mathematics producing infinites in a black hole. Instead, NPQG defines a phase change from dense standard matter-energy into Planck particles and this is where general relativity does not apply. Under certain conditions, Planck particles may escape from black holes because they are not subject to the gravity of general relativity.

Multiverse

The galaxies in the universe.

Pocket Universe

A galaxy.

White Hole

Unused.

Many Worlds Interpretation

Unused.

Vacuum, Quantum Vacuum

Unused.


ACRONYMS

  • AGN : Active galactic nuclei
  • BB : Big Bang
  • BBIT : Big Bang inflation theory
  • BH : black hole
  • CMB : cosmic microwave background
  • ε⊖ or ε- : electrino
  • ε⊕ or ε+ : positrino
  • FCC : face-centered cubic
  • GR : general relativity
  • N : neutron
  • NPQG : Neoclassical Physics and Quantum Gravity
  • NS : neutron star
  • P : proton
  • QM : quantum mechanics
  • S : entropy
  • SM : standard model
  • SMBH : supermassive black hole

J Mark Morris : San Diego : California : 2018 – 2020

Categories
Physics

Quantum Gravity

Imagine that spacetime is an æther of low energy particles (low energy photons, neutrinos, gravitons, and/or axions). The wave function of the dipoles comprising the neutral shells of neighboring particles would interact with an ebb and flow of continuous energy, not a discrete transfer of energy. The outstanding energy from each particle of matter-energy would be the root mean square of the electromagnetic energy interaction with all neighbor wave functions. This would serve to heat or energize the nearby particles. The temperature of spacetime æther relates to gravity. Gravity is the force of convection on matter from the gradient of spacetime æther energy.

All ‘presenting’ matter-energy particles are pulsing energy into the æther, and those waves travel at the local speed of light c and decrease in magnitude with the square of the distance. Every particle pushes energy, they receive energy back. It is an alternating energy flux. This is related, but distinct from a gravitational wave tsunami as a result of a high energy collision (BH-BH, BH-NS, NS-NS) where the spacetime æther particles experience changes in size and displacement. Some particles in the universe don’t participate in this dance. Those are particles on the interior of a Planck core inside supermassive black holes (SMBH). Particles interior to a Planck core can not present their energy (mass) because they are at maximum energy and their neighbors are too.

Let’s use \mathbf{F=GM_{1}M_{2}/r^{2}} to show gravitational interaction of two particles where M1 is the pass of particle 1 and M2 is the mass of particle 2, and this can easily be extended to collections or bodies of matter up to a fairly large size. Neutron stars (NS) and black holes (BH) will be considered separately. Particle 1 pulses energy to the spacetime æther. That energy spreads out at local \mathbf{c^{2}} . Why \mathbf{c^{2}} ? We are dealing with a spherical wave, so surface area is where the energy gets spread. What is the surface area of a sphere? It is \mathbf{4 \pi r^{2}} . So that is where some of these numbers in the physics equations arise naturally. You’ll notice I said local c. c is not a constant. c depends on local permittivity and permeability of the spacetime æther which depend on energy – aka temperature – of the æther neighborhood. Then particle 1 receives an energy pulse back from the spacetime æther. So that is a sine wave. No net energy was transferred. However, particle 1 averages root mean square energy outstanding over that wave cycle. The RMS energy outstanding \mathbf{E_{1}=m_{1}c^{2}} . Local c. So particle 1 averages E1 outstanding.

Meanwhile particle 2 is doing the same thing, and has mass M2 which is given by RMS Energy E2 outstanding.

Now imagine graphing the temperature of spacetime around and between these particles. Each particle would experience a higher spacetime energy in the direction towards the other particle. It turns out that particles experience a convective force towards higher energy spacetime and the steeper that gradient, the higher the convective force of gravity.

The Gradient Temperature of Spacetime

Space time is implemented by an æther which we can imagine as low energy photons, neutrinos, gravitons, and axion like particles. In low gravity free space the spacetime æther has a 2.7 degree Kelvin black body temperature curve that matches what science currently interprets as the cosmic microwave background.

Every isolated celestial body has a spacetime temperature manifold describing spacetime energy in its local neighborhood. For orbs like common stars or smaller the manifold has at a rounded flat peak at the center of the orb because this is the point of maximum energy received from the pulsing matter-energy particles that comprise the orb. Moving radially away from the center of the orb the temperature begins falling and eventually levels off close to 2.7K the farther you get from the orb into free space. The steepness of this spacetime æther temperature curve is proportional to the strength of gravity. At the center of the orb, the differential in spacetime temperature is low and if there was an imaginary hollow space on the center of the core, it would have very low gravity somewhat like free space. With a model of the orbs layers and their composition and temperature, one could scientifically determine the spacetime æther temperature as a function of radius from the center.

The steepness, slope, or more correctly gradient, of spacetime temperature determines the strength of gravity. Pop science makes black holes seem mysterious because ‘nothing can escape the event horizon, not even light’ but it’s really saying that the gradient of spacetime temperature is so high that no particle can achieve the energy required to escape. That still might not be obvious, but it is not as mysterious.

J Mark Morris : San Diego : California : February 12, 2020 : v1

Categories
Physics

NPQG Math

Scientists, skeptics, and critics often ask me “where’s the math?” when I describe Neoclassical Physics and Quantum Gravity (𝗡𝗣𝗤𝗚). It turns out that is a complex and nuanced question to answer.

Related image
theconversation.com

First, I’ll list some of the blog posts that have at least a modicum of mathematical concepts.

Objectively, we can state unequivocally that general relativity (GR) and quantum mechanics (QM) are incorrect because they do not have the correct physical model. Neither GR nor QM theories account for Planck sphere particles (electrino and positrino) nor spacetime æther nor the recycling universe in their physical models. However, we also know that the math of general relativity (GR) and quantum mechanics (QM) works very well for a reasonably large set of conditions and that those theories make many predictions that match the real world. How can this be?

Let’s imagine that you are researching a large collection of X-rays and magnetic resonance images (MRI’s) of human hands in different positions, and you also have a well fitting glove for each hand studied. With these, you could develop a model for how a human hand works, without ever actually seeing or touching a human hand. Your model might actually be quite sophisticated and accurate. Still the fact would remain, that you had never observed a human hand directly. This is like GR and QM. GR is like the glove and QM is like the X-rays and MRI’s. The hand is the 𝗡𝗣𝗤𝗚 electrinos, positrinos, and spacetime æther and how they behave in reality.

GR and QM math do not describe a classical foundation of the universe. Yet NPQG is a classical model. GR is based on a Riemannian spacetime geometry, yet the space in our universe is 3D and Euclidean. A spacetime æther overlays the Euclidean space and implements a Riemannian spacetime. It would be a poor approach to adapt GR and QM math for a classical foundation. It is far better to approach GR and QM from fundamentals and first principles. Eventually this will lead to the ability to reproduce GR and QM math in their ranges and scales of applicability. I focus on the narratives and interpretations and the hierarchy of scaffolding built by the GR-QM era scientists. In doing so, I pick up on the “poker tell” when the theoretical or observational foundation or the narrative interpretation is weak, illogical, or contrary to my reasoning, logic, and intuition about nature. Understanding these weaknesses has provided many clues on where to examine closely for insight into 𝗡𝗣𝗤𝗚. Those insights have led to hypotheses that, if proven, will create a firm foundation for ongoing science.

Consider scale. The electrinos and positrinos are Planck scale particles. They have a radius of the \mathbf{10 ^{-35}} . Configurations of these particles make everything – spacetime æther particles, photons, neutrinos, protons, neutrons, electrons and all the other exotic particles of the Standard Model and Particle Data Guide. However, the most sensitive equipment in particle colliders can only detect particles of order \mathbf{10 ^{-19}} . That is a sixteen order of magnitude gap. So when folks ask for the math, I sometimes think “You can’t handle the scale!” because nothing would be directly testable in the next decade at the scales I am imagining. Even so, given that NPQG is a classical theory, it may be possible to eventually develop math for the Planck scale that when scaled up would reproduce GR-QM era math.

Jack Nicholson in A Few Good Men

As much as we would like to have easy math, we need to remember that everything is not rainbows and rosemary. Nature makes all math possible (in myriad ways), but nature itself may be modeled at different levels of complex reality vs. accuracy vs. precision vs. cost vs. response time vs. other application specific metrics. Similarly, while 𝗡𝗣𝗤𝗚 may be the basis for a theory of everything, we will always need a wide variety of application specific models. This raises the interesting question of which math to develop first.

Which math is a priority? Shall we start with the classical math of harmonic series? How does 𝗡𝗣𝗤𝗚 math map to GR or QM? Is the thermodynamic version of general relativity relevant to NPQG? What is the math associated with a Planck core and the conditions under which it will emit as a jet or rupture? At the most detailed model of reality, we need to think about the geometrical structure of the spacetime æther. Does its geometrical structure change as a function of æther energy? Is the æther a foam? Is it a lattice? Does it tend to arrange in a face centered cubic (FCC) structure over some or all temperatures? Are there multiple geometrical lattice arrangements of spacetime æther particles under different conditions? How does each form of standard matter-energy move through the æther? What about faults, rips, tears, and holes in the spacetime æther geometry? What about turbulence? What level of math is needed for the application? What math is required for simulation of various aspects of 𝗡𝗣𝗤𝗚? These are all great maths to pursue at the appropriate time and it will require a large effort by many people to sort all this out and get it done.

As of early 2020 the foundation of NPQG has become stable and parsimonious to a large degree. Therefore, I have embarked on the classical mathematics that describe NPQG from fundamentals and which are directly tied to the implementation of nature.

J Mark Morris : San Diego : California : June 12, 2019 : v1
J Mark Morris : San Diego : California : February 22, 2020 : v2